skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wallace, Corey D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Groundwater-surface water interaction (hyporheic exchange) is critical in numerous hydrogeochemical processes; however, hyporheic exchange is difficult to characterize due to the various spatial (e.g., sedimentary architecture) and temporal (e.g., stage fluctuations) variables that influence it. This interdisciplinary study brings forth novel insights by integrating various methodologies including geophysical surveys, physical and chemical sediment characterization, and water chemistry analysis to explore the interplay of the numerous facets governing hyporheic zone processes within a compound bar deposit. The findings reveal distinct sedimentary facies and geochemical zones within the compound bar, driven by the sedimentary architecture. Cross-bar channel fills are identified as critical structures influencing hydrogeochemical dynamics, acting as baffles to groundwater flow and modulating nutrient transformations. Geophysical imaging and hydrogeochemical analyses highlight the complex interplay between sediment characteristics and subsurface hydraulic connectivity, emphasizing the role of sediment heterogeneity in controlling hyporheic exchange and solute mixing. The study concludes that sediment heterogeneity, particularly the presence of cross-bar channel fills, plays a pivotal role in the hydrogeochemical dynamics of the hyporheic zone. These structures significantly influence hyporheic flow paths, solute residence times, and nutrient cycling, underscoring the necessity to consider the fine-scale sedimentary architecture in models of hyporheic exchange. The findings contribute to a deeper understanding of riverine ecosystem processes, offering insights that can inform management strategies for water quality and ecological integrity. 
    more » « less
  2. Nitrous oxide (N2O) is a potent greenhouse gas that also contributes to ozone depletion. Recent studies have identified river corridors as significant sources of N2O emissions. Surface water-groundwater (hyporheic) interactions along river corridors induce flow and reactive nitrogen transport through riparian sediments, thereby generating N2O. Despite the prevalence of these processes, the controlling influence of physical and geochemical parameters on N2O emissions from coupled aerobic and anaerobic reactive transport processes in heterogeneous riparian sediments is not yet fully understood. This study presents an integrated framework that combines a flow and multi-component reactive transport model (RTM) with an uncertainty quantification and sensitivity analysis tool to determine which physical and geochemical parameters have the greatest impact on N2O emissions from riparian sediments. The framework involves the development of thousands of RTMs, followed by global sensitivity and responsive surface analyses. Results indicate that characterizing the denitrification reaction rate constant and permeability of intermediate-permeability sediments (e.g., sandy gravel) are crucial in describing coupled nitrification-denitrification reactions and the magnitude of N2O emissions. This study provides valuable insights into the factors that influence N2O emissions from riparian sediments and can help in developing strategies to control N2O emissions from river corridors 
    more » « less
  3. Abstract Tides in coastal rivers drive river‐groundwater (hyporheic) exchange and provide opportunities for nitrate removal that may improve coastal water quality. Silt and sand layers in coastal floodplain sediments can alter the flow and transformation of nitrate. Our goal was to understand how sediment heterogeneity influences nitrogen dynamics near tidal rivers. Numerical simulations show that oxic, variably saturated sand layers and anoxic, organic‐rich silt layers are sites of nitrification and denitrification, respectively. The exchange of river water and nitrate through heterogeneous sediments increases with sand fraction, as sand lenses become longer and more connected. The amount of nitrate removed from river water also increases but represents a smaller portion of total nitrate exchange through the hyporheic zone, causing removal efficiency to decline. Our results suggest that accurate characterization of aquifer heterogeneity leads to an improved understanding of sites of nutrient transformation within floodplain sediments. 
    more » « less
  4. Abstract Changes in streamflow and water table elevation influence oxidation–reduction (redox) conditions near river–aquifer interfaces, with potentially important consequences for solute fluxes and biogeochemical reaction rates. Although continuous measurements of groundwater chemistry can be arduous, in situ sensors reveal chemistry dynamics across a wide range of timescales. We monitored redox potential in an aquifer adjacent to a tidal river and used spectral and wavelet analyses to link redox responses to hydrologic perturbations within the bed and banks. Storms perturb redox potential within both the bed and banks over timescales of days to weeks. Tides drive semidiurnal oscillations in redox potential within the streambed that are absent in the banks. Wavelet analysis shows that tidal redox oscillations in the bed are greatest during late summer (wavelet magnitude of 5.62 mV) when river stage fluctuations are on the order of 70 cm and microbial activity is relatively high. Tidal redox oscillations diminish during the winter (wavelet magnitude of 2.73 mV) when river stage fluctuations are smaller (on the order of 50 cm) and microbial activity is presumably low. Although traditional geochemical observations are often limited to summer baseflow conditions, in situ redox sensing provides continuous, high‐resolution chemical characterization of the subsurface, revealing transport and reaction processes across spatial and temporal scales in aquifers. 
    more » « less
  5. Abstract In coastal rivers, tides facilitate surface water‐groundwater exchange and strongly coupled nitrification‐denitrification near the fluctuating water table. We used numerical fluid flow and reactive transport models to explore hydrogeologic and biogeochemical controls on nitrogen transport along an idealized tidal freshwater zone based on field observations from White Clay Creek, Delaware, USA. The capacity of the riparian aquifer to remove nitrate depends largely on nitrate transport rates, which initially increase with increasing tidal range but then decline as sediments become muddier and permeability decreases. Over the entire model reach, local nitrification provides a similar amount of nitrate as surface and groundwater contributions combined. More than half (~66%) of nitrate removed via denitrification is produced in situ, while the vast majority of remaining nitrate removed comes from groundwater sources. In contrast, average nitrate removal from surface water due to tidal pumping amounts to only ~1% of the average daily in‐channel riverine nitrate load or 1.77 kg of nitrate along the reach each day. As a result, tidal bank storage zones may not be major sinks for nitrate in coastal rivers but can act as effective sinks for groundwater nitrate. By extension, tidal bank storage zones provide a critical ecosystem service, reducing contributions of groundwater nitrate, which is often derived from septic tanks and fertilizers, to coastal rivers. 
    more » « less